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ABSTRACT: To overcome challenges with observing ocean heat content (OHC) over the entire ocean, we propose a
novel approach that exploits the abundance of satellite data, including data from modern satellite geomagnetic surveys
such as Swarm. The method considers a novel combination of conventional in situ (temperature and pressure) as well as
satellite (altimetry and gravimetry) data with estimates of ocean electrical conductance (depth-integrated conductivity),
which can potentially be obtained from magnetic observations (by satellite, land, seafloor, ocean, and airborne magneto-
meters). To demonstrate the potential benefit of the proposed method, we sample model output of an ocean state estimate
to reflect existing observations and train a machine learning algorithm [Generalized Additive Model (GAM)] on these sam-
ples. We then calculate OHC everywhere using information potentially derivable from various global satellite coverage}
including magnetic observations}to gauge the GAM’s goodness of fit on a global scale. Inclusion of in situ observations of
OHC in the upper 2000 m from Argo-like floats and conductance data each reduce the root-mean-square error by an order
of magnitude. Retraining the GAM with recent ship-based hydrographic data attains a smaller RMSE in polar oceans than
training the GAM only once on all available historical ship-based hydrographic data; the opposite is true elsewhere. The
GAM more accurately calculates OHC anomalies throughout the water column than below 2000 m and can detect global
OHC anomalies over multiyear time scales, even when considering hypothetical measurement errors. Our method could
complement existing methods and its accuracy could be improved through careful ship-based campaign planning.

SIGNIFICANCE STATEMENT: The purpose of this manuscript is to demonstrate the potential for practical imple-
mentation of a remote monitoring method for ocean heat content (OHC) anomalies. To do this, we sample data from a
reanalysis product primarily because of the dearth of observations below 2000 m depth that can be used for validation
and the fact that full-depth-integrated electrical seawater conductivity data products derived from satellite magnetome-
try are not yet available. We evaluate multiple factors related to the accuracy of OHC anomaly estimation and find
that, even with hypothetical measurement errors, our method can be used to monitor OHC anomalies on multiyear
time scales.

KEYWORDS: Energy budget/balance; Temperature; In situ oceanic observations; Satellite observations; Ocean models

1. Introduction

In this paper, we propose a remote monitoring technique
for ocean heat content (OHC) anomalies and evaluate the
method using the output of an ocean state estimate. With
the ocean absorbing more than 93% of the excess heat
accumulating on our planet due to the presence of green-
house gases humans have emitted (e.g., Levitus et al. 2001;
Trenberth et al. 2014, 2016; von Schuckmann et al. 2016),
OHC}the specific heat- and density-weighted depth
integral of temperature}has been considered a proxy for
Earth’s energy imbalance and therefore a critical climate
variable to monitor. Further, the associated ocean temper-
ature increase has accounted for roughly half of the
observed global mean sea level rise from 1972 to 2008
(Church et al. 2011, 2013; Gregory et al. 2013) and about
one-third of the observed global mean sea level rise since

2005 (Chambers et al. 2017; WCRP Global Sea Level
Budget Group 2018).

Since the 1970s, large-scale warming of the upper 700 m of
the ocean has been well studied (Domingues et al. 2008; Ishii
and Kimoto 2009; Durack and Wijffels 2010; Levitus et al. 2012;
Abraham et al. 2013; Balmaseda et al. 2013; Lyman and John-
son 2014; Roemmich et al. 2015; Gleckler et al. 2016; Boyer et al.
2016; Ishii et al. 2017; Cheng et al. 2017; Zanna et al. 2019). Our
ability to monitor the temperature of the upper 2000 m in
regions that are not covered by sea ice has improved consid-
erably since the 2000s due to the deployment of Argo floats
(e.g., Riser et al. 2016). However, below 2000 m depth, we
must rely on hydrography measured along ship tracks,
which has been shown to provide insufficient sampling of
the ocean’s temperature at such deep depths (Garry et al.
2019). Over the past several decades, observations of hydro-
graphic transects have been the primary source of informa-
tion about the full-depth OHC; only very recently has the
deep Argo program begun to supplement these data (e.g.,
Johnson et al. 2019). Thus, ocean heat content anomalies
have been a challenge to accurately monitor.
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Widely accepted approaches to monitoring full-depth OHC
include constructing objective analyses of observations, pro-
ducing reanalyses with data assimilation–based modeling
systems, or performing large model ensembles of hindcasts
(e.g., Trenberth et al. 2014, 2016), but these approaches sub-
stitute the problem of incomplete observations with either
interpolation or imperfect modeling systems. Across many
different ocean reanalysis products, the ensemble mean can
be smaller than the ensemble spread in depth-integrated tem-
perature anomalies over the upper 700 m, particularly in
coastal and high-latitude regions (Palmer et al. 2017). Ocean
reanalysis products tend to use a combination of in situ obser-
vations of temperature (e.g., Kouketsu et al. 2011; Abraham
et al. 2013; Balmaseda et al. 2013; Roemmich et al. 2015;
Gleckler et al. 2016; Boyer et al. 2016; Ishii et al. 2017; Cheng
et al. 2017; Meyssignac et al. 2019) and fill in the spatial gaps
with reanalysis data. These spatial gaps are significant because
∼13% of the OHC resides in regions, such as those covered
by sea ice and at depths below 2000 m (Purkey and Johnson
2010), which are not well sampled by observations (Desbruyères
et al. 2016). However, there is considerable bias (Garry et al.
2019) and uncertainty (Llovel et al. 2014) in the extent of the
unobserved OHC and warming of such regions has been
increasing with time (Gleckler et al. 2016). The hindcast
approach relies not only on imperfect ocean models, but also
imperfect reanalysis forcing fields. For these reasons, other
methods to monitor OHC have been developed.

A number of independent approaches for monitoring OHC
have been proposed. These include acoustic time travel meas-
urements (Munk and Wunsch 1979; ATOC Consortium 1998;
Dushaw et al. 2009; Wu et al. 2020), satellite altimetry obser-
vations of internal tides phase speed changes along their ray
paths (Zhao 2016), atmospheric measurements of oxygen and
carbon dioxide concentrations (Resplandy et al. 2019), theo-
retical and model-derived relationships between sea surface
heights (from satellite altimetry) and bottom pressure (via satel-
lite gravimetry) with ocean heat content (Jayne et al. 2003;
Fasullo and Gent 2017), ocean net surface fluxes (radiative and
turbulent adjusted for mass transfer) from space to get the net
ocean heating rate (L’Ecuyer et al. 2015), thermal expansion as
a residual inferred from space-based observations and the sea
level budget (Chambers et al. 2017; WCRP Global Sea Level
Budget Group 2018; Hamlington et al. 2020), and depth-
integrated electrical conductivity (“conductance”) and depth-
integrated conductivity-weighted velocity (“conductivity trans-
port”) measurements from in situ observations and inferred
from satellite magnetometry (Tyler and Sabaka 2016; Irrgang
et al. 2017, 2019; Trossman and Tyler 2019). Recently, Tyler
(2021) extracted a century of tidal variability from hourly mag-
netic data taken at the Honolulu Geomagnetic Observatory
and found the modulations and trend to be correlated with that
seen in tide-gauge data and proposed by Colosi and Munk
(2006) to be due to the effect of warming on the internal-tide
wave speed. But no single method is known to be capable of
both monitoring changes in global OHC accurately enough to
resolve annual variations}relevant for quantifying the energy
imbalance of our planet}and distinguishing full-depth OHC

changes at each horizontal location of the ocean}relevant for
hurricane forecasting.

A combination of many of the above methods could be
used in conjunction with a machine learning method to moni-
tor OHC. Machine learning methods have a history rooted in
statistical regression techniques (e.g., Hastie et al. 2001).
Their framework is useful for the purpose of calculating OHC
because of established associations with sea surface height,
bottom pressure, conductance, and seafloor depth (Jayne et al.
2003; Fasullo and Gent 2017; Trossman and Tyler 2019). One pri-
mary difference between a general linear regression technique
and a machine learning method is that the latter needs to find a
balance between the bias and variance of its predictions through
a regularization term. This term prevents the machine learning
method from overfitting to a particular training dataset, so that
the approach can be applied to other datasets for prediction pur-
poses. To guarantee that the machine learning model does not
overfit to the training data, a type of cross-validation method is
typically applied by leaving out some of the training data, pre-
dicting those data, and repeating for different combinations of
the training dataset. Two examples of machine learning meth-
ods that are cast in a regression-like framework include the
Generalized Additive Model (GAM; Wood 2006; Trossman
et al. 2011) and the artificial neural network (e.g., Hsieh and
Tang 1998; Wahle et al. 2015; Lary et al. 2016; Irrgang et al.
2019). In this study, we use a GAM to establish whether
remotely monitoring OHC is possible using quantities that can
be inferred using in situ and/or satellite data}in particular,
sea surface height plus seafloor depth (or depth of the water
column), bottom pressure, conductance, and OHC in the
upper 2000 m.

Because some of the data}whose information potential for
remotely monitoring OHC we aim to probe here}are not
currently available on a global scale}but are likely to be in
the future}we use the output from an ocean state estimate:
the Estimating the Circulation and Climate of the Ocean
(ECCO) framework. The specific advantages of using ECCO
for this study include the following: 1) conductance from sat-
ellite magnetometry and its uncertainty are not currently
available data products, 2) sea surface height from satellite
altimetry and its uncertainty in sea ice–covered regions are
not currently available data products, 3) OHC in the upper
2000 m is sparsely and/or intermittently observed in regions
without Argo floats, 4) OHC throughout the full water col-
umn is observed only where there are historical hydrographic
transects and now in select additional locations because of
other instruments, 5) we can sample ECCO in any way we
want to probe the information potential of any variable on a
global scale, 6) we have inserted a conductivity subroutine
into ECCO (Trossman and Tyler 2019) so that we retain ther-
modynamic consistency instead of approximating the conduc-
tivity using monthly averaged temperature and salinity fields
like other models do, and 7) ECCO has been validated by
independent observations from the ones it assimilates and is
considered realistic as a data product (Heimbach et al. 2019).
For at least some of these reasons, both Trossman and Tyler
(2019) and Fournier et al. (2020) used ECCO output to inves-
tigate the proxy potential of model variables that are
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monitored using satellites. With the help of ECCO in the pre-
sent study, we aim to establish whether it is possible to remotely
monitor OHC anomalies. We do this by treating some ECCO
output variables that can be remotely monitored}sea surface
heights, bottom pressures, conductance, and Argo-derived
OHC in the upper 2000 m}like they are retrievals that can be
run through an algorithm}the GAM}to calculate OHC
(anomalies). We aim to subsample each of these ECCO output
variables according to existing}historical hydrographic trans-
ect}observations as training data for the GAM and predict
OHC (anomalies) elsewhere}with satellite retrievals. Note
that, in this study, we do not use sea surface temperature (SST)
or sea surface salinity (SSS), each of which can also be moni-
tored via satellites. Satellite-based microwave measurements,
for example, detect the top micrometer and centimeter, respec-
tively, instead of bulk temperature and bulk salinity over the
top 10 m, which are ECCO’s SST and SSS. Importantly, OHC
(anomalies) in the upper 2000 m}which we use here}contains
information about SST and is a better approximation of full-
depth OHC (anomalies); also, conductance (anomalies)}which
we use here as well}contains information about both SST and
SSS and is a better proxy of full-depth OHC (anomalies). In the
absence of conductance observations, we could use SST and
SSS observations but we aim to demonstrate the importance of
conductance in the present study.

The structure of this manuscript is as follows. First, we
describe the GAM that is used to calculate OHC (anomalies)
from several observables and outline the data that the GAM
is trained on. We utilize ECCO output in order to examine
which potentially satellite-derivable quantities are most asso-
ciated with OHC (anomalies). We specifically examine the
added information from each potential data source and their
potential to complement existing methods to monitor OHC
anomalies. We do this by evaluating multiple factors related
to the accuracy of OHC (anomaly) estimation, including the
time period length, inclusion of particular quantities, and sam-
pling strategy of the training data. We last assess the feasibil-
ity of our OHC anomaly monitoring strategy and emphasize
that there is a balance between retraining the GAM using
data over relatively short time scales with the amount of train-
ing data that grows over longer time scales in monitoring
OHC changes.

2. Modeling system and observations

To accomplish our goal of establishing how accurate an
observational network can monitor OHC anomalies}even
before consideration of measurement uncertainty}we require
a global realistic set of data that can be sampled for several vari-
ables. An ocean state estimate that is in excellent agreement
with historical observations and their changes relative to ocean
reanalyses (Heimbach et al. 2019) is utilized here. We use ver-
sion 4, revision 3, of ECCO (ECCOv4r3; Fukumori et al. 2017)
framework for the ocean state estimate, which is based on the
Massachusetts Institute of Technology General Circulation
Model (MITgcm) from 1992 to 2015. The fields used for this
analysis were generated by a rerun of ECCOv4r3 using the
MITgcm. The model’s output is sampled along historical

hydrographic transects in order to train our statistical model
and then the model’s globally complete output is compared to
the resulting statistical model’s estimates of OHC.

a. Ocean state estimation framework

The MITgcm is used to generate the data analyzed for the
purpose of this study and is briefly described here. The
MITgcm uses the so-called LLC90 grid, which is at a nominal
18 3 18 (0.58 3 0.58 at the equator) resolution with 50 vertical
levels. The shallowest model layer is centered at 5 m depth
(5 m thick) and the deepest model layer is centered at 5906.2 m
depth (nearly 500 m thick). The model features curvilinear
Cartesian coordinates (Forget et al. 2015, see their Figs. 1–3),
rescaled height coordinates (Adcroft and Campin 2004), and a
partial cell representation of bottom topography (Adcroft
et al. 1997). The MITgcm uses a dynamic/thermodynamic sea
ice component (Menemenlis et al. 2005; Losch et al. 2010;
Heimbach et al. 2010) and a nonlinear free surface with fresh-
water flux boundary conditions (Campin et al. 2004). The wind
speed and wind stress are specified as 6-hourly varying input
fields over a 24-yr period (1992–2015). There are 14-day adjust-
ments to the wind stress, wind speed, specific humidity, short-
wave downwelling radiation, and surface air temperature.
These adjustments are based on estimated prior uncertainties
for the chosen atmospheric reanalysis (Chaudhuri et al. 2013),
which is ERA-Interim (Dee et al. 2011). The net heat flux is
then computed via a bulk formula.

The ECCO framework reconstructs the history of the ocean
over the recent satellite era by filling in the gaps of incomplete
observations in a dynamically and kinematically consistent man-
ner (Stammer et al. 2016) using the MITgcm and its adjoint-
based data assimilation capabilities. The reason why the ECCO
state estimate can be performed in a dynamically and kinemati-
cally consistent manner is that its initial conditions and model
parameters are estimated via least squares using assimilated
observational constraints. The least squares problem solved by
the ECCO framework utilizes the method of Lagrange multi-
pliers through iterative improvement, which relies upon a
quasi-Newton gradient search (Nocedal 1980; Gilbert and
Lemarechal 1989). The tangent linear model (Jacobian) and its
transpose (the adjoint) are needed to solve for the Lagrange
multipliers. Algorithmic (or automatic) differentiation tools
(Griewank 1992; Giering and Kaminski 1998) have allowed for
the practical use of Lagrange multipliers in a time-varying non-
linear inverse problem such as the one for the ocean because
the discretized adjoint equations no longer need to be explicitly
hand coded. Each of the data points in the time interval of
1992–2015 is weighted by a best-available estimate of its error
variance. The observational data assimilated into the ECCO
framework to arrive at the model’s objective}to reconstruct
the ocean’s historical conditions}are discussed in Wunsch and
Heimbach (2013). These data include satellite-derived ocean
bottom pressures, sea ice concentrations, sea surface tempera-
tures, sea surface salinities, sea surface height anomalies, and
mean dynamic topography, as well as profiler- and mooring-
derived temperatures and salinities (Fukumori et al. 2017). The
control variables that are solved for by ECCO include the initial
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condition of the velocities, sea surface heights, temperatures,
and salinities; time-mean three-dimensional Redi (Redi 1982)
coefficients, Gent–McWilliams (Gent and McWilliams 1990)
coefficients, and vertical diffusivities (Gaspar et al. 1990); and
time-varying two-dimensional surface forcing fields. The Redi
and Gent–McWilliams coefficients are needed because our con-
figuration of ECCO is not eddy resolving. If ECCO were opti-
mized in an eddy-resolving configuration, minimizing misfits
between the model and observations could result in overfitting
the ocean parameters and state to each eddy over such a long
time period (decades), so the ECCO state estimate has been
produced at non-eddy-resolving configurations. Note that the
effects of (sub)mesoscale eddies could alter the relationships
between, for example, sea surface height/bottom pressure
anomalies and OHC anomalies relevant to this study, but
because satellites typically cannot resolve eddies either, using a
non-eddy-resolving model is ideal for the purpose of the present
study. Fifty-nine iterations in the optimization run of ECCO
were performed to arrive at the solution we start from. The ini-
tial conditions and model parameters calculated in this final iter-
ation are used for the reruns performed here. We perform a
rerun of the ECCOv4r3 solution, which goes from 1992 through
2015 (Fukumori et al. 2017). Schemes for calculating the con-
ductivity and specific heat at each time step as the model runs
are taken from the TEOS-10 package (McDougall and Barker
2011). The relationship between the conductivity and the elec-
tromagnetic fields measured by satellite magnetometry is
described below.

b. Calculation of electromagnetic fields

Ohm’s law for a moving conductor,

J � s (E 1 u 3 F), (1)

is a vector equation describing the electric current density J
generated by an electric field E and/or the relative velocity of
seawater u of the conducting fluid as it moves through the
magnetic field F, which we take to be the prescribed back-
ground main magnetic field; the total magnetic field B = F 1

b includes a component b associated with J. When the flow
velocity is not considered, Eq. (1) reduces to J = sE, and the
electrical conductivity s can be observed as simply the ratio of
J and E, as might be obtained from in situ measurements, for
example. Alternatively, in experiments where s is observed,
one may infer instead the flow velocity components u. Hence,
it is fairly direct to see how in situ electromagnetic (EM) obser-
vations can be used to infer or constrain ocean conductivity
and/or velocity.

As the first departure from these truly in situ observations,
one can describe configurations where EM observations on
the seafloor, for example, can be used to estimate bulk inte-
grated ocean parameters. Consider a controlled electric cur-
rent source on the seafloor and assume the cable/antenna
length is of a scale exceeding that of the ocean thickness. The
electrical currents return throughout the water column and
their amplitude will be modulated by any changes in the con-
ductance. We see then a potential observational advantage as
this seafloor system can be used to monitor depth integrated

ocean parameters. Where the conductivity fluctuates due to
change in water temperature, for example, this system could
be regarded as a bulk thermometer of ocean temperature.
Using an alternating current source to remove problems such
as electrode drift, very high accuracy could be achieved. One
would likely operate this system at frequencies low enough
such that the ocean appears “electrically thin,” meaning that
the electromagnetic wavelengths in the ocean are much larger
than the ocean thickness such that the return electric currents
reach through the water column as described. The associated
period increases with conductance, and therefore typically
also with ocean thickness, but does not exceed 10 min even in
the thickest ocean regions (Tyler 2017).

One need not, however, have in situ or seafloor observa-
tions of J and E in order to make parameter estimates. Max-
well’s equations can be combined with Eq. (1) into a
governing electromagnetic induction equation:

tB � $ 3 u 3 B 2
1

m0s
$ 3 B

( )
, (2)

where m0 is the vacuum permeability constant. Note that the
three (of the four) underlying Maxwell’s equations, from
which the induction equation is derived, remain approxi-
mately invariant when adopting the rotating frame of the
planet and considering global scales and periods similar to a
day (Tyler and Mysak 1995). Here the opportunity for infer-
ring/constraining the ocean parameters s, u from remote
observations of B is expressed. Specialized forms of the induc-
tion equation appropriate for large scales near Earth’s surface
are described in detail in Tyler (2017). Even when due to elec-
tric currents within the ocean, the magnetic fields pass
through sea ice and can reach satellite altitudes. But because
of geometric attenuation away from the sources, the fields
associated with features having length scales much smaller
than the satellite altitude will be reduced. Hence, the remote
magnetic fields mostly describe depth-integrated, large-scale
ocean features. One can see in the specialized forms of the
induction equation (Tyler 2017) that the ocean parameters
that are potentially inferred are the conductance S � �

h
sdr

and the conductivity transport Ts �
�
h
sudr.

One can regard the electric currents in the ocean (and their
associated magnetic fields, which reach beyond the ocean) as
generated by either a time-dependent component of the mag-
netic field incident on the ocean surface, or as due to the ocean
flow whereby a small part of the flow’s kinetic energy is spent
driving these currents. The first process is referred to as electro-
magnetic “induction” and a very common application involves
magnetic fields incident on the ocean due to electric currents in
the ionosphere and magnetosphere. One can regard the induc-
tion process as one where electric currents at one location (e.g.,
the ionosphere) entrain electric currents in another conductor
(e.g., the ocean) through the connection of their Coulomb
fields which can reach over great distance and even through
insulators. The second process is referred to as “motional
induction” and can be loosely regarded as due to the tendency
of a moving electrical conductor to entrain a permeating
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magnetic field. In the case of a perfect conductor, the magnetic
field is regarded as “frozen in” and moves with the conductor.
The frozen in scenario is not typically achieved in ocean appli-
cations as the conductivity is not high enough (or the flow time
scales short enough) to reduce the importance of the magnetic
diffusion term [the last term in Eq. (2)].

Finally, for the purposes of this paper it should be noted
that while S is a parameter potentially recoverable from either
induction or motional induction processes, Ts can be recovered/
constrained only in processes of motional induction. Because S

and Ts might be inferred in different and varying conditions that
also involve a range of expected errors, in this study we shall
consider the addition of S and Ts to the GAM separately. Then
we use prescribed reference error levels with the most important
satellite-derivable quantities.

c. Observed hydrographic transects

The hydrographic transects used in this study are taken
from the World Ocean Circulation Experiment (WOCE) and
the Climate Variability and Predictability (CLIVAR) pro-
grams (Fig. 1). Specifically, we use transects that have ade-
quate information about both temperature and salinity to
calculate a density and/or electrical conductivity (s), as in pre-
vious studies that require one or more of these three quanti-
ties (e.g., Kunze 2017). Because we will never measure the
full-depth OHC at every horizontal location in the ocean, it is
not very practical to use observations at every point in the
ocean to train the GAM and then estimate the full-depth
OHC at each location. Instead, we train the GAM along par-
ticular transects that have been sampled by ships and apply
the GAM.

Along these transects, we sample the following variables
from the ECCO output: sea surface height (SSH), bottom
pressure (pb), conductance (S), seafloor depth (H0), and con-
ductivity transport vector (Ts) and its divergence. From the
ship, the SSH can be measured. The SSH anomaly is related
to the sea level anomaly, which is primarily a function of
OHC and added mass. The deepest measurement taken from
the ship can be used to infer pb. The pb anomalies are impor-
tant to account for the added mass contributions to sea level
as a correction to using SSH anomalies as a proxy for OHC
anomalies (Jayne et al. 2003). Seafloor cables (e.g., Schnepf
et al. 2021), such as the Florida Cable, measure voltage differ-
ences, which are converted to an estimate of the conductivity-
weighted depth-averaged flow velocity crossing the cable
(Sanford 1971) or what we refer to here as the cross-cable
component of Ts. Mooring arrays (e.g., Lozier et al. 2019),
such as OSNAP, provide both conductivities and velocities
such that S and Ts can be calculated. S could also be deliv-
ered by seafloor and surface-towed observatories, which could
monitor the full-depth conductance quite accurately but
would realistically provide spatial coverage similar to ship-
based hydrographic data. S is expected to be spatially corre-
lated with OHC over much of the ocean because both S and
OHC are depth integrated. Because Ts is not necessarily
measured}in situ}along the same hydrographic transects as
the other variables, there may be logistical difficulties with

using all of these data to train a GAM that calculates OHC.
This is why we examine the importance of including Ts in the
GAM in the present study. Last, H0 can be inferred from
ship-based measurements. H0 is important to account for
because a deeper ocean has the capability to hold more heat
at a given location. H0 can change over time due to processes
such as bottom deformation (Vishwakarma et al. 2020), but is
assumed to be temporally constant here because ECCO,
whose output we sample, makes this assumption. A GAM can
update the relationship between OHC and a static field
such as H0 when all other (above-listed) potentially satellite-
derivable predictors are included over a relevant time scale;
this is why the GAM could require updated training data for
each time period over which the OHC is monitored.

SSH anomalies are routinely monitored by satellite altime-
try over the global ocean, whereas pb, S, and Ts can poten-
tially be derived from satellite data. In particular, pb}in
water column thickness equivalent}can be derived from sat-
ellite gravimetry (Ponte et al. 2007). The values of S and Ts

may be derived or constrained using electric and magnetic
field observations (including observations by satellite magne-
tometers) and this paper therefore considers their use in a
GAM. The value of H0 has been derived from ship-based and
satellite measurements and is essentially time invariant,
requiring that the GAM be retrained at each time we want to
estimate OHC. After being trained on transects of in situ
measurements of SSH, pb, S, H0, and Ts, OHC can then be
estimated using bathymetry and time-dependent satellite
observations with a GAM of the form given in the following
subsection. Using hypothetical measurement errors (see
below), we further examine what the practical limitations are
to using SSH, pb, S, H0, Ts, or some subset of these variables,
as predictors of OHC.

d. Generalized Additive Model specifications

We present scatterplots of the 1992–2015 averages of the
OHC versus each of its potential predictors in Fig. 2, including
the aforementioned electromagnetic variables. The strongest

FIG. 1. Locations (black dots) where hydrographic transect obser-
vations were taken by ship and used in the present analysis.
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correlation is between OHC andH0 (Fig. 2a). There is a fairly
good correlation between OHC and SSH anomaly, as has
been noted in previous studies (Fig. 2b). There is a strong cor-
relation between OHC and both pb (Fig. 2c) and S (Fig. 2d).
The spatial distributions of each of OHC and each of the
most highly correlated variables (H0, pb, and S) are shown in
Fig. 3. This figure suggests that these variables are most
strongly correlated in deeper parts of the ocean and more
weakly correlated elsewhere (e.g., the Arctic Ocean). The dom-
inant mechanisms explaining ocean heat uptake variability}
namely, Ekman heat transport convergences, air–sea fluxes,
and other aspects of ocean dynamics}are different over vari-
ous regions of the ocean (e.g., the subtropical versus subpolar
North Atlantic; Buckley et al. 2015). Because conductivity pri-
marily varies with temperature in most regions of the ocean, we
expect Ts to vary with heat transport, and the divergence of the
conductivity transport, $ · Ts, would be related to heat trans-
port convergence. However, in the ECCO output, $ · Ts is
poorly correlated with OHC (Fig. 2e), and is therefore excluded
from the rest of our analysis. Reasons for the poor correlation
include the boundary (e.g., air–sea) fluxes that can lead to non-
conservation of temperature and our depth integration over the
full water column instead of a fraction of the upper ocean. Also,
$ · Ts is related to the time rate of change in OHC, not OHC
itself, such that a running time integral of $ · Ts}which should
be2S/t if conductivity is a conservative tracer}could be used.
However, this would present additional difficulties}associated

with sustaining an observing system for $ · Ts over longer periods
of time}in addition to the challenges with calculating divergen-
ces along the transects used to train our GAM. Despite how the
sign of each individual component of Ts could matter, the individ-
ual components of Ts are poorly correlated with OHC. However,
there is a marginally fair correlation between OHC and |Ts|
(Fig. 2f), which is likely due to greater heat/conductivity transport
magnitudes found where there is more heat/conductivity and their
common depth integrals. The scatterplots shown in Fig. 2 look vir-
tually identical when either monthly or annual averages of each
quantity are considered, and their correlations are qualitatively
the same.

We also show the scatterplots for OHC anomalies}
computed monthly relative to the average over the entire
1992–2015 time interval}versus a subset of the variables that
were found to be fairly well correlated to OHC in Fig. 4. (The
anomalies in $ · Ts are poorly correlated with OHC anomalies}
magnitudes less than about 0.05. The anomalies in |Ts| have a
range of correlations with OHC anomalies similar to seafloor
depths and do not provide significant unique information about
OHC anomalies}shown later, but for OHC magnitudes only.)
One month (January 1992) is shown in Fig. 4, but we
inspected other months and indicate a range of correlations
with OHC anomalies, depending upon the month, in each
panel. S anomalies are more strongly correlated with OHC
anomalies than any other combination of variables (Fig. 4a).
This highlights the importance of including S anomalies as a

FIG. 2. Scatterplots between ocean heat content (OHC; units: J m22) and (a) the seafloor depths (units: m), (b) the sea surface height
anomalies (units: m), (c) the bottom pressures (units: bars), (d) the conductances (units: S), (e) the divergences of the conductivity trans-
ports (units: S s21), and (f) the magnitudes of the conductivity transports (units: S m s21), each averaged over 1992–2000. The darker blue
colors indicate there is a greater density of dots. The black dots are individual datum; these points are not great enough in number to corre-
spond to a shade of blue. Also listed are the correlations between each of the quantities plotted (corr).
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potential proxy for OHC anomalies. The next strongest cor-
relation is between OHC anomalies and SSH anomalies
(Fig. 4b), like Jayne et al. (2003) found. pb anomalies and H0

marginally correlate with OHC anomalies (Figs. 4c,d), but
because Jayne et al. (2003) found that pb anomalies were
important to consider, we include them here in our GAM.
We later include}as a predictor in the GAM}one last vari-
able that can be relayed via satellites, but is derived from in
situ measurements: the OHC in the upper 2000 m, or
OHC2000m. We choose 2000 m here because of the depth
range that is covered nearly globally by Argo floats. Includ-
ing OHC2000m makes it more challenging to remotely moni-
tor OHC globally because of regions that are ice covered for
part of each year, but when known, this variable is very accu-
rately known.

This motivates our use of a GAM for OHC of the form

ÔHC� f0 1 f1 ŜSH′1 Ĥ0

( )
1 f2 p̂b( )

1 f3 Ŝ
( )

1 f4 ÔHC2000m

( )
1 g ŜSH′; p̂b;Ŝ;Ĥ0; ÔHC2000m

( )
, (3)

ŜSH′ � SSH′ hfac1 �hfac( )u l 2 lz( ) 1 �SSH′ ,

p̂b �pb m 1 �m( ) 1 �pb ,

Ŝ �S b 1 eb( )u ĜS b 1 eb( )
[ ]

1 �S,

Ĥ0 �H0 1 �H0 ,

ÔHC2000m � OHC2000m 1 �OHC2000m ,

u(x) � 1; if x$ 0
0; if x, 0

,
{

and for OHC anomalies (OHC′) of the form

ÔHC′ � f0 1 f1 ŜSH′( )
1 f2 p̂′

b
( )

1 f3 Ŝ
′( )
1 f4(ÔHC′

2000m)
1 g ŜSH′; p̂′

b;Ŝ
′;ÔHC′

2000m

( )
, (4)

ŜSH′ � SSH′ hfac1 �hfac( )u l 2 lz( ) 1 �SSH′ ,

p̂′
b � p̂′

b m 1�m( ) 1�p′b ,

Ŝ′ � S′ b 1eb( )u ĜS′ b 1eb( )
[ ]

1 �S′ ,

ÔHC′
2000m � OHC′

2000m 1 �OHC′
2000m

,

where fi(·) for i = 0, … , 4 are smoother functions, g(·) is the
sum of tensor products of each cross-pairwise combination of
arguments (i.e., squares of each variable are not included),
the hat/circumflex ( ·̂ ) indicates a measurement (its absence
indicates the truth), the variables with arguments and without
a hat are derived from the quantities that a satellite measures
(arguments being intermediate quantities that are inferred),
and �X indicates measurement error for variable X. The
GAM-based estimates of OHC using Eq. (3) are insensitive
to the definition of OHC as a function of temperature anom-
aly or temperature because f0 is a spatially varying but tem-
porally constant offset. SSH′ is a function of all of the
correction factors (hfac) involved in the retrieval algorithm

FIG. 3. Maps of (a) the OHC (units: J m22), (b) the water column depth (units: m), (c) the bottom pressures (units:
bars), and (d) the conductances (units: S), each averaged over 1992–2015.
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and postprocessing from satellite altimetry (e.g., the tides). SSH
has been observed over poleward latitudes (l) of lz = 668 for
only a subset of the history of satellite altimetry. The bathyme-
try (H0) is included in the GAM such that H = H0 1 SSH′ is
the water column depth. Alternatively, we can formulate the
GAM in terms of the absolute dynamic topography, but the
geoid}like H0}could be separable into the constant function,
f0, for each time considered. If the nonlinear interaction terms
in g(·) are significant, then the geoid and H0 are not separable
and either the geoid orH0 need to be accounted for. For proof-
of-concept purposes, we stick with using H0 and not the geoid.
The bottom pressure pb is a function of the mass (m) inferred
from the retrieval algorithm from satellite gravimetry. The
conductance S and conductivity transport Ts are functions of
the magnetic field b inverted from the retrieval algorithm and
postprocessing from satellite magnetometry; the functions that
indicate whether these inversions are possible (when $0) are
represented by ĜS and Ĝ |Ts |, respectively. Although
ECCOv4r3 does not include tides to demonstrate whether
tidal amplitudes are useful information for the GAM in
addition to the other predictors, the information these tidal
amplitudes provide [e.g., M2, like Irrgang et al. (2019)
included] is likely similar to that provided by S and/or Ts.

Using many terms in the GAMs for OHC and OHC anom-
alies, we perform a preliminary sensitivity analysis to the
uncertainties in the observations. The accuracy in which S

and/or Ts may be estimated from satellite magnetic data has
not yet been established, so we only examine sensitivities of
the RMSE to example values. To do this for each variable in
Eqs. (3) and (4), random noise is selected from a normal dis-
tribution with mean zero and standard deviation equal to
various levels [�X in Eqs. (3) and (4) for each variable X].
This noise is added to the predictors in Eqs. (3) and (4)
because the satellite data carry the majority of the observa-
tional uncertainties. OHC is reestimated using the GAM
approach with the added noise. Unless otherwise stated, the
standard deviations (of the normal distributions of the randomly
sampled measurement errors) are set to be �SSH′ = 1 cm,
�pb� 2bars, �S = 3 S, �H = 1 m, and � Ts| |� 0:5S m s21 for the sen-
sitivity calculations and the same values are used for the standard
deviations in each variable's corresponding anomaly. OHC2000m

is excluded for the purpose of the preliminary error sensitivity
analysis, but included in the final GAM because of its significant
predictive information. The hypothetical measurement errors for
ocean heat content over the top 2000 m OHC2000m are at
most �OHC2000m � 10293 48503 20003 0:002 � 19962 600 J m22,
compared to a typical value of OHC, ∼4 3 1012 J m22. Because
of this accuracy, we do not include OHC2000m in the prelimi-
nary error analysis, but we will include OHC2000m in our final
estimates that demonstrate the feasibility of our remote moni-
toring method.

FIG. 4. Scatterplots between OHC (units: J m22) anomalies and (a) conductance (units: S), (b) the sea surface height
anomalies (units: m), (c) the bottom pressure anomalies (units: bars), and (d) the seafloor depths (units: m) for the
month of January 1993. The darker blue colors indicate there is a greater density of dots. The black dots are individual
datum; these points are not great enough in number to correspond to a shade of blue. Also listed are the range of
correlations between each of the quantities plotted (corr), depending upon the month selected.
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3. Results

We first present results to identify some important factors
to consider when estimating OHC and/or OHC anomalies
with a machine learning algorithm, such as a GAM. These
factors include the time period length, the inclusion of partic-
ular satellite-derived quantities, and the spatiotemporal sam-
pling of any in situ observations that can help reduce the root-
mean-square error (RMSE) of the GAM estimates. For each of
these results, we train our GAM on (spatially sampled) monthly
averaged output of ECCOv4r3 and estimate OHC everywhere,
iterating this procedure for each month over specified time inter-
vals. We present RMSE values with respect to OHC and OHC
anomalies when demonstrating the relative importance of each
predictor. Last, we present additional factors to consider when
practically implementing our proposed remote monitoring
method for OHC. We investigate whether we can detect OHC
anomalies using the GAM-based estimates. We determine this
in two ways on variable time scales: 1) GAM-based estimates
are within a 95% confidence interval of the ECCOv4r3 values
or 2) RMSE , 100%. To determine whether our method can
be practically implemented with observations in a future study
with the second criterion, we present normalized RMSE values
(percent RMSE) when considering all factors. We show that
conclusions from each of the two criteria are often similar.

a. OHC versus OHC anomaly estimation:
Important factors

We first consider the importance of the time period length
over which we estimate OHC and OHC anomalies using
monthly data everywhere over the full 1992–2015 time interval

of ECCOv4r3 versus the first 9 years (1992–2000). The GAM-
based estimation procedure’s RMSE for OHC is smaller when
performed over the entire time period of ECCOv4r3 than
over the first 9 years (Figs. 5a,c). A similar result is shown in
Figs. 5b and 5d for OHC anomalies, but the difference
between the RMSEs over the two different time periods is
not as obvious as it is for the OHC estimates. The spatial pat-
terns shown in Figs. 5a–d are qualitatively different. The
globally averaged OHC anomalies estimated by the GAM
gradually go from larger to smaller than the globally averaged

FIG. 5. Importance of time period length in estimating OHC: shown are the root-mean-square errors (RMSEs)
(a) using the GAM, OHC ∼ f1(SSH′)1 f2 (pb)1 f3(S)1 f4(H0)1 g(SSH′, pb, S,H0), for the full length of ECCOv4r3
(1992–2015) and (c) using the same GAM specification, but for the first 9 years (1992–2000). Also shown is the same
for OHC anomalies (OHC′) (b) using the GAM, OHC′ ∼ f1 SSH′( )1 f2 p′b

( )
1 f3 S′( )1 f4(H0)1 g SSH′,p′b,S

′,H0
( )

for the full length of ECCOv4r3 (1992–2015) and (d) using the same GAM specification, but for the first 9 years
(1992–2000). The Black Sea and Caspian Sea are not included in ECCO.

FIG. 6. Accuracy in estimating OHC anomalies: shown with a
black curve are the OHC anomalies using the GAM, OHC′ ∼
f1 SSH′( )1 f2(p′b)1 f3 S′( )1 f4(H0)1 g SSH′,p′b,S

′,H0
( )

, minus
the OHC anomalies for the full length of ECCOv4r3 (1992–2015)
and the confidence intervals to the 95% level based on the stan-
dard errors (dashed curves) from the GAM (assuming they are
normally distributed).
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ECCOv4r3 OHC anomalies (Fig. 6). The errors in the globally
averaged OHC anomalies are typically insignificant according
to the confidence intervals at the 95% level and are almost
always within 10% of the globally averaged ECCOv4r3 OHC
anomalies (not shown). It is tempting to take time differences
across GAM-based OHC estimates to get OHC anomalies
that are more accurate than the GAM-based OHC anomaly
estimates in some locations, but it remains to be seen in our
analysis whether this would be useful. These findings further
suggest that the remainder of our analysis will be sensitive to
the time periods over which we perform the GAM-based esti-
mation procedures; we focus on the 1992–2000 time period for
worst case scenario RMSEs.

We next examine the information that conductance pro-
vides to OHC and OHC anomaly estimates using monthly
data everywhere over the time period with the larger RMSE
(1992–2000). Recall that we provide information from the var-
iables shown in Fig. 3 for the OHC calculations and exclude
seafloor depths for the OHC anomaly calculations because
seafloor depths provide little information about OHC anoma-
lies (Fig. 4d). The RMSE of the OHC estimates are an order
of magnitude larger when conductance is excluded from the
GAM than when it is included (Figs. 7a,c). This is true even in
regions where temperature does not explain the majority of the
variability in conductivity (Trossman and Tyler 2019, see gray
circles in their Figs. 5a,b). The RMSE of the OHC anomaly esti-
mates are much larger when conductance is excluded from the
GAM compared to when conductance is included (Figs. 7b,d;
note the different scale in Fig. 7d). For both OHC and OHC

anomalies, the RMSE of the GAM-based estimates is larger
everywhere without conductance in the GAM, not only in gen-
eral. Later, we will assess the importance of each predictor in the
GAM. We expect that the conductance will stand out as one of
themost important predictors to include in theGAMand the con-
ductivity transport and its divergence will be the least important.

Another important factor to consider including in the
GAM that could be practically relevant when implementing a
remote monitoring system for OHC is the use of OHC
observed over the entire water column in the GAM’s training
data. Of course, OHC over the top 2000 m is included within
these training data so we examine the information that OHC
over the top 2000 m provides to the GAM. The OHC in the
top 2000 m is highly correlated is the OHC over the full water
column (Fig. 3a; Pearson correlation coefficient of 0.95). The
OHC anomalies in the top 2000 m is even more highly corre-
lated with OHC anomalies throughout the water column
(Pearson correlation coefficient of 0.97–0.99). The percentage
of the full-column OHC that is in the top 2000 m varies in
space correlates with the underlying bathymetry, which
explains the high correlations that are close to constant over
time. We now assume that we have OHC over the top 2000 m
everywhere to demonstrate that it provides unique informa-
tion, in addition to that of water column depth, ocean bottom
pressure, and conductance. The RMSE of the GAM-based
OHC estimates is reduced by another order of magnitude
when the OHC in the upper 2000 m is included in the GAM
(Figs. 8a,c). The RMSE of the GAM-based OHC anomaly
estimates experiences an even more dramatic reduction upon

FIG. 7. Importance of including conductance in estimating OHC: shown are the RMSEs (a) using the GAM, OHC ∼
f1(SSH′) 1 f2 (pb) 1 f3(H0) 1 g(SSH′, pb, H0), over the first 9 years of ECCOv4r3 (1992–2000) and (c) for the GAM,
OHC ∼ f1(SSH′) 1 f2 (pb)1 f3(S)1 f4(H0) 1 g(SSH′, pb, S,H0), over the first 9 years (1992–2000). Also shown is the
same for OHC′ (b) using the GAM, OHC′ ∼ f1 SSH′( )1 f2 p′b

( )
1 f3 H0( )1 g SSH′,p′b,H0

( )
, over the first 9 years of

ECCOv4r3 (1992–2000) and (d) for the GAM, OHC′ ∼ f1 SSH′( )1 f2 p′b
( )

1 f3 S′( )1 f4(H0)1 g SSH′,p′b,S
′,H0

( )
, over

the first 9 years (1992–2000). Note that the color-bar scale is different in (b) and (d) from Figs. 5b and 5d. The Black
Sea and Caspian Sea are not included in ECCO.
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inclusion of the OHC anomalies in the upper 2000 m (Figs.
8b,d). If full-depth conductance from in situ observations is
incomplete or satellite-derived conductance is unavailable, it
would be possible to use conductance over the upper 2000 m
(e.g., from Argo) instead of conductance over the full water
column. If conductance over the upper 2000 m is used instead
of conductance over the full water column in the calculation
for Figs. 8b and 8d, then the RMSE is globally 12.1% greater.
These findings indicate that temperature and salinity data
from the upper 2000 m from available measurements (e.g.,
Argo) should be included in the GAM’s training data, but if full-
depth conductance is available (e.g., from satellite, land, seafloor,
ocean, and airborne measurements), then it is better to include
both OHC in the upper 2000 m and full-depth conductance.

One practical consideration for our remote monitoring sys-
tem for OHC is that we will not have global coverage of OHC
observations through the water column, let alone in the upper
2000 m, with which to train our GAM. No assessment has
been made or implied concerning the potential replacement
of more conventional observations by magnetometric meth-
ods thus far; instead, we have performed analyses to examine
what conductance data can add to other ongoing satellite and
in situ data collections. There are other observational pro-
grams that can potentially add information about OHC mag-
nitudes and anomalies. One such program, which can provide
OHC over the entire water column, is the deep Argo pro-
gram. We next sample the ECCOv4r3 output and train our
GAM on about 400 (full-depth) deep Argo floats distributed

throughout the ocean. We show Fig. 9, which frames the
RMSE in terms of percentage of the 24-yr average OHC over
1992–2015 using two different spatiotemporal sampling
schemes for the GAM’s training data. As expected, having a
certain number (∼400) of horizontal locations sampled for the
GAM’s training data (Fig. 9a) results in a smaller-percentage
RMSE than training the GAM on a small (∼30) but increas-
ing number of sampled horizontal locations up to the same
number (∼400) over time (Fig. 9). The RMSE of the OHC in
the subpolar North Atlantic, region east of the Weddell Sea,
and continental shelf regions each heavily depends upon the
spatial sampling for a given time. Because our samples are
only at locations where hypothetical deep Argo floats exist,
these results suggest that a remote monitoring system for
OHC will require more full-depth training data for the GAM
than 400 locations. This motivates our use of ship-based
hydrographic transect data.

b. Remote monitoring prototype

We next find combinations of transects that have been his-
torically observed by ships (Fig. 1) that can train the GAM to
have a minimal spatial RMSE in estimating global OHC. By
iterating the GAM training and estimation steps with single
transects, all combinations of pairs of transects, all combina-
tions of triplets of transects, and so on until all historical trans-
ects are included in the training step, we find several optimal
combinations of transects that can be used to minimize the
global RMSE in estimating OHC at each location with zero

FIG. 8. Importance of including OHC over the top 2000 m in estimating OHC throughout the water column: shown
are the RMSEs (a) using the GAM, OHC ∼ f1(SSH′)1 f2 (pb)1 f3(S)1 f4(H0)1 f5(OHC2000 m)1 g(SSH′, pb, S,H0,
OHC2000m), over the first 9 years of ECCOv4r3 (1992–2000) and (c) for the GAM, OHC ∼ f1(SSH′)1 f2(pb)1 f3(S)1
f4 (H0) 1 g(SSH′, pb, S, H0), over the first 9 years (1992–2000). Also shown is the same for OHC′ (b) using the GAM,
OHC′ ∼ f1 SSH′( )1 f2 p′b

( )
1 f3 S′( )1 f4(H0)1 f5 OHC′

2000m( )1 g SSH′,p′b,S
′,H0,OHC′

2000m
( )

, over the first 9 years
of ECCOv4r3 (1992–2000) and (d) for the GAM, OHC′ ∼ f1 SSH′( )1 f2 p′b

( )
1 f3 S′( )1 f4(H0)1 g SSH′,p′b,S

′,H0
( )

,
over the first 9 years (1992–2000). Note that the color-bar scale is different in (b) and (d) from Figs. 5b, 5d, and 7b, 7d.
The Black Sea and Caspian Sea are not included in ECCO.
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measurement errors for one example month (April 1992).
These combinations of transects can yield a spatial RMSE in
estimating OHC of about 0.15%–0.25% with all of the predic-
tors (top right in Fig. 10), given zero or very small measurement
errors (an order of magnitude smaller than the ones we stated
in the last paragraph of section 2d). The combination of trans-
ects mapped in Fig. 10 (bottom left) is an example of one that
leads to minimal RMSE. Other combinations with transects in
the Pacific Ocean can yield similar RMSE values, but those are
not shown. The example shown in Fig. 10 includes most histori-
cal transect data in the Indian Ocean, several select hydro-
graphic transects in the Atlantic Ocean (including the long-
running AR07/OSNAP-West line), and nothing in the Pacific
Ocean. Table 1 tabulates the RMSE using this example combi-
nation of transects, but with different combinations of predic-
tors. Table 1 demonstrates that a predictor that has a smaller
correlation with OHC reduces the RMSE by less than a predic-
tor that has a higher correlation with OHC when added to the
GAM.

The most important factors that determine the spatial
RMSE are the variables included in the GAM (Table 1) and
the variance in OHC used to train the GAM. The minimiza-
tion of spatial RMSE using a GAM often requires training
data that sufficiently span the range and domain of the statisti-
cal model (e.g., Trossman et al. 2011). The example shown in
Fig. 10 satisfies that criterion, as there is an inverse relation-
ship between the percent spatial RMSE of the GAM and the
standard deviation of the OHC in the training (hydrographic
transect) data per number of transects, regardless of whether

errors in the satellite data are accounted for. This inverse rela-
tionship still holds when Ts and other variables are excluded
from the GAM (not shown), and with similar spatial RMSEs
in estimated OHC (Table 1). The number of observations
used to train the GAM as a function of time throughout the
water column and only in the upper 2000 m are shown in Fig. 10
as reference for the accuracy of our method as a function of
time (see later).

1) PRELIMINARY ERROR ANALYSIS

Next, we evaluate how the spatial RMSE for OHC esti-
mates can be impacted by the presence of measurement
errors in the satellite data. The percentage change in spatial
RMSE due to a change in the ratio of the standard deviation
of the added random noise to the mean value of the variable
(i.e., percentage change in spatial RMSE times the signal-to-
noise ratio) is quantified in Fig. 11. These sensitivities reflect
how informative each variable is to the GAM. Here, we sepa-
rate out the SSH anomalies and seafloor depth to highlight
the sensitivity to the measurement errors of individual varia-
bles. We also include Ts to demonstrate the relatively unin-
formative role that Ts plays in the GAM.

Accounting for only one variable’s measurement error, the
sensitivity of the spatial RMSE to the level of noise is shown
in Fig. 11a. This figure suggests that the spatial RMSE in
OHC is most sensitive to conductance measurement errors
when the other measurement errors are negligible and simi-
larly sensitive to seafloor depth measurement errors when all
other measurement errors are ignored. Accounting for all
measurement errors simultaneously, the spatial RMSE in
OHC is most sensitive to seafloor depth measurement errors
(Fig. 11b). This is because the strongest correlation between
OHC and any variable is between OHC and seafloor depth
(Fig. 2a). However, because not all of the standard deviation
levels we chose for measurement error magnitudes are well
known, we further examine the sensitivity of spatial RMSE to
measurement errors in the partial models included in Table 1.
The spatial RMSE in OHC is most sensitive to bottom pres-
sure}and similarly sensitive to conductance}in each of the
partial models that excludes seafloor depth (Fig. 11c). When
seafloor depth is included, the measurement errors associated
with seafloor depth dominate the sensitivity in spatial RMSE
to measurement errors. The measurement errors in each of
the variables used in the GAM will be important to quantify
if our technique is going to be practically applied to monitor
OHC, but the variable that needs to be most accurately
known is the one that changes the least and could be most
well observed: the seafloor depths.

We perform the same hypothetical measurement error sen-
sitivity analysis for Fig. 11b, except for OHC anomalies in
Fig. 12. Here, we include all of the variables included in our
final GAM specification: SSH anomalies, bottom pressure
anomalies, conductance anomalies, and OHC anomalies in
the upper 2000 m. We repeat the calculations by training the
GAM in two different ways: one by only training on data that
are available for the year in which a GAM estimate is being
made (Fig. 12a) and one by training on all available data from

FIG. 9. Importance of spatial sampling of OHC over the top 2000
m: the percent RMSEs using the GAM, OHC ∼ f1 (SSH′)1 f2 (pb)1
f3 (S) 1 f4(H0) 1 f5(OHC2000 m) 1 g(SSH′, pb, S, H0, OHC2000m),
over the final 15 years of ECCOv4r3 (2001–15), (a) trained on nearly
400 horizontal grid locations each year and (b) trained on an increasing
number of horizontal grid locations over time (increasing from about
30 to nearly 400). The Black Sea and Caspian Sea are not included in
ECCO.
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any time (Fig. 12b). The former results in smaller sensitivities
to measurement errors than the latter, but the relative sensi-
tivities to individual variables are about the same, whether
the GAM is trained using one set of data or another. The sen-
sitivities to bottom pressure anomaly measurement errors are
largest, followed by sensitivities to measurement errors in
OHC anomalies in the upper 2000 m and then the sensitivities
to conductance anomaly measurement errors. The sensitivi-
ties to SSH anomaly measurement errors are negligible com-
pared to the others. Because of the large sensitivity to bottom
pressure anomalies, it should be noted that Schindelegger
et al. (2021) estimated the errors in bottom pressure from sat-
ellite gravimetry are typically about 2-cm-equivalent sea level,
which is about two orders of magnitude smaller than the
amount we perturbed the bottom pressure anomaly measure-
ment errors. So while the sensitivities are largest to bottom pres-
sure anomaly measurement errors, there is only a percent or
two RMSE increase due to the measurement errors of bottom
pressure anomalies from satellite gravimetry. More concerning
is the sensitivity to measurement errors in OHC anomalies in
the upper 2000 m and whether the actual conductance anomaly

measurement errors from satellite magnetometry are larger than
our hypothetical values.

2) TRADE-OFF BETWEEN OHC VARIANCE IN TRAINING

DATA AND FREQUENCY OF GAM TRAINING UPDATES

Training the GAM using the transects shown in Fig. 10 and
applying the GAM with measurement errors in the predictors
to estimate OHC as above}but for each month as a function
of time}we can accurately estimate OHC relative to the
ECCOv4r3 output. Here, we exclude Ts due to potential chal-
lenges with observing the velocities along hydrographic trans-
ects concurrently with the other variables and its relatively
small impact on RMSE. Figure 13a shows the temporally
averaged residuals of the GAM estimates at each location of
the ocean over 1992–2015. The GAM-based OHC estimates
are too small for each month over 1992–2015 primarily
because the Arctic Ocean has not been sampled in the train-
ing data and because the global relationships between each of
the predictors and OHC are different in the Arctic compared
to the rest of the world. These temporal residuals are fairly
constant over time in the shelf regions, but vary dramatically

FIG. 10. (top left) Flowchart for how the remote monitoring system for OHC would work. First, a Generalized Additive Model (GAM)
is trained using hydrographic transect observations of ocean heat content, sea surface heights, bottom pressure, depth-integrated conductiv-
ity (conductance), and seafloor depth at hydrographic transect locations. Then the GAM is used at every wet point of the World Ocean
where satellite altimetry (sea surface heights), gravimetry (bottom pressure), and magnetometry (conductance) observations exist to esti-
mate the OHC. (top right) Example relationships between the standard deviation of OHC from all training hydrographic transects per
transect and the RMSE of the resulting GAM with and without considering errors in the satellite observations; these errors are an order of
magnitude smaller than the ones we stated in the last paragraph of section 2d. (bottom right) The number of observations from all hydro-
graphic transects shown in Fig. 1 at any depth (black curve) and above 2000 m depth (gray curve). (bottom left) An example combination
of hydrographic transect locations that determines one of the smallest RMSEs in estimated OHC, as determined by random sampling of
every combination of hydrographic transects, which includes A01W, A14, AR04, AR07E, I01E, I01W, I02E, I02W, I03, I04, I05E, I07N,
I09N, IR01W, IR03, IR04, IR06, ISS1, and ISS2.
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over time in the Arctic Ocean, as indicated by the temporal
standard deviations of the residuals (Fig. 13b). The temporal
RMSE becomes strongly correlated (0.9998) with the seafloor
depth over long (.10 years) time periods (Fig. 13c), suggest-
ing that OHC could be remotely monitored over decadal time
scales with a predictable RMSE. However, the biases in the
global OHC estimates with the GAM are not highly predict-
able for each month, as evidenced by how the temporal stan-
dard deviation of the residuals (Fig. 13b) dominate the bias
contribution to the temporal RMSE (Fig. 13c) and by the fair
correlation between the GAM-based global OHC estimates
and the ECCOv4r3 global OHC estimates (0.5). The correla-
tion between the GAM-based global OHC estimates and the
ECCOv4r3 global OHC estimates increases to nearly 0.6
when the Arctic Ocean is excluded. Only coastal regions have
statistically significant differences between the GAM-based
estimates and the ECCOv4r3 estimates of OHC (magenta
crosses in Fig. 13c) and these regions have the smallest OHC.

There is an optimal balance between the variance of OHC
data used to train the GAM and the frequency over which the
GAM is trained. Figures 13d–f demonstrate that using hydro-
graphic transects only for the year over which the GAM-
based estimates are being applied does not necessarily reduce
the temporal residuals, standard deviation of the residuals, or
RMSE. The residuals are largest in the same locations,
whether we use all of the transects shown in Fig. 10 or only
the transects for the year over which the GAM-based esti-
mates are being applied (typically 1–10 transects per year).
However, the (relatively small) differences between the resid-
uals between use of these two training datasets are incoherent
in their spatial patterns (Fig. 13d, which should be noted is an
order of magnitude smaller in scale than Fig. 13a). The stan-
dard deviations of the residuals and the temporal RMSE also
look similar, regardless of which training dataset is used, but

both the standard deviations of the residuals (Fig. 13e) and
the temporal RMSE (Fig. 13f) are larger in open ocean
regions when the transects for the year over which the GAM-
based estimates are being applied are used. This is an example
of how the number of transects used to train the GAM can be
more important for accuracy of GAM-based estimates than
use of the relevant times to train the GAM, but the opposite
can also happen (e.g., if less transects were used than shown
in Fig. 10).

A similar exercise to the one shown in Fig. 13 is repeated
for OHC anomalies with all significant predictors (SSH′, S′,
p′b, and OHC′

2000m). We account for possible measurement
errors here by randomly sampling values from normal distri-
butions with standard deviations equal to their hypothetical
measurement errors. We present the (percent) RMSE over
time (Fig. 14) in order to highlight the potential accuracy to
monitor OHC anomalies using our method. When all of the
transects collected over any year (Fig. 1) are used to train a
GAM that is never retrained, the RMSE is typically of order
∼109–1010 J m22 (Fig. 14a), which can be less than 100% of
the OHC anomaly magnitudes outside of high-latitude
regions (blue colors in Fig. 14b). The polar oceans have
greater than 1000% RMSE. This makes OHC anomalies
potentially detectable using our method on a long-term (mul-
tiyearly or decadal) basis. Outside of the polar regions, the
GAM could be trained on the ship-based full-column hydro-
graphic transect observations that have already been collected
over many decades as well as available altimetry, gravimetry,
magnetometry, and in situ upper 2000 m fine structure data.

We next show that there is also a trade-off between the
training data’s OHC variance and GAM training frequency
when predicting OHC anomalies. We do this by comparing
the OHC anomalies from the GAM trained only once on all
available ship-based hydrographic transect data with the

TABLE 1. The globally area-averaged percent root-mean-square errors (RMSE) between the ECCO-derived ocean heat content
(OHC) and the Generalized Additive Model (GAM)-derived OHC for many different GAMs. The percent RMSE in OHC is
computed by calculating the root-mean-square error between the ECCO-derived OHC and the GAM-derived OHC and dividing by
the area-averaged ECCO-derived OHC (≈4.1 3 1012 J m22). No measurement errors were accounted for in these calculations so
perfect information along each of the randomly chosen hydrographic transects and inferred from the satellites is assumed. This
example uses data to predict OHC during April 1992. The smoother functions, fn(·), are different in each row and for different
n = 1, … , 5. The tensor product functions, g(·), are also different in each row.

Terms included in GAM: OHC = f0 1… Percent RMSE in OHC

f1(SSH′) 43.6%
f1(pb) 5.51%
f1(S) 5.92%
f1(H0) 0.60%
f1(|Ts|) 41.4%
f1(SSH′) 1 f2(pb) 6.12%
f1(SSH′) 1 f2(pb) 1 g(SSH′, pb) 6.10%
f1(SSH′) 1 f2(pb) 1 f3(S) 1.92%
f1(SSH′) 1 f2(pb) 1 f3(S) 1 g (SSH′, pb, S) 0.93%
f1(SSH′) 1 f2(pb) 1 f3(S) 1 f4(H0) 0.21%
f1(SSH′) 1 f2(pb) 1 f3(S) 1 f4(H0) 1 g(SSH′, pb, S, H0) 0.15%
f1(SSH′) 1 f2(pb) 1 f3(S) 1 f4(H0) 1 f5(|Ts|) 0.21%
f1(SSH′) 1 f2(pb) 1 f3(S) 1 f4(H0) 1 f5(|Ts|) 1 g(SSH′, pb, S, H0, |Ts|) 0.15%
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OHC anomalies from GAMs that are retrained based on only
the data available for a given year in which a prediction is
made. If we retrain our GAM for each year where ship-based
hydrographic transect data exist and supplement those with
only the concomitant satellite-derivable data in the training
dataset, then the RMSE is generally a similar order of magni-
tude (Fig. 14c). In high-latitude regions, this yearly retraining
procedure allows us to detect OHC anomalies on a multiyear
basis because the RMSE is less than 100% (Fig. 14d). How-
ever, outside of the polar oceans, OHC anomalies using the
yearly retraining procedure have larger RMSE than using a
GAM that is trained only once on all available historical data.
The physical relationship between our predictors and full-
column OHC anomalies is likely the most important informa-
tion to provide the GAM, but the GAM needs to be retrained
on short-term (e.g., yearly) bases to account for the relatively
quickly changing polar oceans. The RMSE is about 7.7%
larger, on global average, when the strategic set of transects
(Fig. 10) are sampled in January of each year and used to
train the GAM only once instead of training the GAM only
once (Fig. 14a) on all available historically sampled transects
(Fig. 1). The RMSE is about an order of magnitude larger
when the GAM is retrained each year on the strategic set of

transects that are sampled in January, for example, of each
year (not shown) instead of retraining the GAM on any avail-
able historically sampled transects from a given year (Fig. 14c).
Due to the trade-off highlighted here between the training
data’s OHC variance and GAM training frequency, we suggest
that OHC anomalies can be monitored outside of the polar
oceans by training the GAM only once on all available ship-
based coverage and in the polar oceans by retraining the GAM
over shorter periods of time (e.g., annual time scales).

The accuracy in estimating OHC anomalies throughout the
water column and the accuracy of the same below 2000 m are
highlighted with time series of the globally averaged percent-
age differences between the GAM-based estimates and the
ECCOv4r3 values in Fig. 15. When the GAM is trained on all
available transects, at least once per year the percentage dif-
ferences are less than 100% and within the confidence inter-
vals of the globally averaged estimates to the 95% level for
the estimates throughout the water column (Fig. 15a) and
below 2000 m depth (Fig. 15b). Each of these time series has
a seasonal cycle amplitude of tens of percent error because of
the times when the transects were sampled within particular
years. The percentage errors reverse in sign and drift toward
negative values in the 2000s (Fig. 15a), when there are less

FIG. 11. Some sensitivities of the OHCRMSE due to measurement errors. Shown are (a) the percent RMSE increase per
noise-to-signal ratio due tomeasurement error for each individual variable’s contribution (one at a time with no other errors),
and (b) as in (a), but accounting for all errors at once. (c) As in (b), but for reduced models (those specified in Table 1):
OHC ∼ f1 SSH′( )1 f2 pb( )1 g SSH′,pb( ), OHC ∼ f1 SSH′( )1 f2 pb( )1 f3(S)1 g(SSH′,pb,S), OHC ∼ f1 SSH′( )1
f2 pb( )1 f3 S( )1 f4(H0)1 g SSH′,pb,S,H0

( )
, and OHC ∼ f1 SSH′( )1 f2 pb( )1 f3 S( )1 f4 Ts| |( )1 g SSH′,pb,( S, Ts| |)

from left to right. The units of SSH′ are meters, of pb are bars, of S are S, of |Ts| are S m s21, and ofH0 are meters.
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hydrographic transect data (Fig. 10). When the number of
observations used to retrain the GAM for a given year is suffi-
cient, the percentage differences are less than 100% and the
95% confidence intervals always overlap 0% error in the
GAM-based estimates of globally averaged OHC anomalies,
whether the OHC anomalies are throughout the water col-
umn (Fig. 15c) or only below 2000 m (Fig. 15d). In 1996 and
2000, for example, there were too few data to retrain an accu-
rate GAM at the beginning of those years (Figs. 15c,d). In
1999, there were too few data below 2000 m to retrain an
accurate GAM at the beginning of that year (Fig. 15d). The
correlation between the absolute value of the errors in the
globally averaged OHC anomalies in Figs. 15c and 15d and
the number of observations used to retrain the GAM each
year over the full water column (below 2000 m) is 20.13
(20.11) over 1992–2015. Each correlation is closer to 20.2
over 1992–2000 because of the relative dearth of training data
post-2000 (Fig. 10). The time series shown in Fig. 15 corrobo-
rate how the accuracy of our method is sensitive to the spatio-
temporal sampling of ship-based campaigns.

4. Conclusions

Using the output of an ocean state estimate (ECCO), we
trained a statistical model (GAM) on variables that can be
monitored remotely (SSH and pb), can be potentially moni-
tored remotely (S), have time-invariant estimates (H0), and in
situ data that are routinely relayed via satellites (OHC2000m)
to compute root-mean-square errors (RMSEs) in OHC. We
repeated these exercises for OHC anomalies using SSH, pb,
S, and OHC2000m anomalies. Practical considerations require

that the GAM is trained on available ship-based hydrographic
transect data as well as potentially deep Argo measurements
because these are our only full-depth measurements of OHC.
Our focus was on the 1992–2000 time period because the
RMSE is largest for this period; if the RMSE is acceptable for
this time period, then we can use our method anytime
between 1992 and 2015.

We assessed the importance of particular predictors, obser-
vational coverage, and measurement errors. Our interest in S

comes from the fact that it is a full-depth integrated parameter
and can potentially be remotely observed over the globe (even
under ice) using satellite magnetometry. We highlighted the
importance of S and OHC2000m as predictors when trying to
reduce the RMSE, particularly to the level of temporal varia-
tions over short time intervals. We also showed that increasing
the number of deep Argo-like floats sampling the entire water
column’s OHC will reduce the RMSE in OHC. We then
trained the GAM on hydrographic transects, and demonstrated
that a GAM can be used to accurately monitor global OHC to
within about 0.15%RMSE on yearly time scales, assuming per-
fect information (i.e., no measurement errors and no sampling/
aliasing/retrieval problems). This is not sufficiently accurate to
monitor the changes in OHC over short time intervals, particu-
larly when measurement errors are accounted for, even when
global satellite observational coverage is attainable. For OHC,
measurement errors associated with seafloor depths were
shown to dominate all others for the variable the machine
learning algorithm is most sensitive to. However, we were able
to detect OHC anomalies using our method to within 100%
RMSE almost everywhere using a combination of approaches
to training the GAM, even when we accounted for hypothetical

FIG. 12. Some sensitivities of the OHC anomalies RMSE due to measurement errors. Shown are the percent RMSE
increase per noise-to-signal ratio due to measurement error for each individual variable’s contribution accounting for
all errors at once, like the calculations for Fig. 11b but for OHC anomalies. (a) The sensitivities for each variable’s
measurement error when the GAM for OHC anomalies is trained only on data for the year when the estimate is being
made. (b) As in (a), but the GAM for OHC anomalies is trained on all available data from any time. The units of
SSH′ are meters, of p′b are bars, of S

′ are S, and of OHC′
2000m are J m22.
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measurement errors (see Figs. 14b,d). The measurement errors
associated with bottom pressure anomalies were shown to dom-
inate all others. Given the small uncertainties in bottom pres-
sures derived from observations (e.g., Schindelegger et al.
2021), these results suggest that OHC anomalies could poten-
tially be monitored}over multiyear time scales}using our pro-
posed remote monitoring method.

We showed that there is a trade-off between the variance in
OHC (anomalies) in the training data for the GAM and the
frequency of training the GAM, whether the OHC (anoma-
lies) are throughout the water column or below 2000 m depth.
To demonstrate this, we compared the RMSE from GAM-
based predictions of OHC and OHC anomalies in two config-
urations: 1) the GAM is only trained once based on all avail-
able data and 2) the GAM is trained on only available data of
a given year when a prediction is made. OHC anomalies could
be monitored using the GAM with all available historical
ship-based training data outside of the polar oceans. However,
retraining the GAM over short (e.g., yearly) time scales could
reduce the RMSE in the OHC anomalies in some regions,
despite the sparseness of training data (with low OHC vari-
ance). While physical principles primarily dictate the relation-
ships between each of the predictors and OHC anomalies,

updates to the GAM are needed in regions of the ocean (e.g.,
polar oceans) where there are relatively quick changes in the
spatial distribution of OHC anomalies. Observational cam-
paigns could be designed to specifically minimize the RMSE in
GAM-based predictions of OHC anomalies by sampling a suffi-
cient amount of OHC anomaly variance over short time scales.
These campaigns could similarly provide in situ conductance
data for validation/calibration of remote conductance estimates.

The RMSE for OHC estimates can further increase due to
difficulties with constraining target variables from satellite
data, incomplete sampling, and aliasing. For example, there is
currently no observational data product for S from satellite
magnetometry or other magnetic data. Because of this, we
discussed the value of S for estimating OHC separately and
did not attempt to estimate OHC (anomalies) from observa-
tions using our method. It would also be useful for full-depth
ship-based conductivity–temperature–depth (CTD) measure-
ments to report their measured conductivity because full-
depth conductance should be included in the training data for
the approach we proposed in the current study. Also, salinity
data have at least as large normalized measurement errors as
conductivity because of error propagation of both tempera-
ture and conductivity measurements and because temperature

FIG. 13. Including measurement errors in the data used to plug into the GAM and the transects shown in Fig. 10 for training data, shown
are maps of (a) the temporally averaged residuals from the GAM-estimated OHC (units: J m22), (b) the temporal standard deviations of
the residuals from the GAM-estimated OHC (units: J m22), and (c) the temporal RMSEs of the GAM-estimated OHC (units: J m22).
Magenta crosses are shown in (c) wherever the GAM-estimated OHC is statistically significantly different from the ECCO-estimated
OHC to the 95% confidence level, using 1.96 times the standard errors computed by the GAM as the half-width of the 95% confidence
intervals. Also shown are the differences between the (d) temporally averaged residuals, (e) temporal standard deviations of the residuals,
and (f) temporal RMSEs of the GAM-estimated OHC when trained on all transects shown in Fig. 10 and when trained only on transects
from a given year for which the estimates are made (“yearly”). Yellow colors in (d)–(f) mean that values are greater using all transects
shown in Fig. 10 and blue colors in (d)–(f) mean that values are greater using only transects from the given year for which the estimates are
made. Note that the color-bar scale in (d) maxes out at an order of magnitude less than that in (a) to emphasize how small the bias is rela-
tive to temporal standard deviation of the errors. The Black Sea and Caspian Sea are not included in ECCO.
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and conductivity measurements may not correspond to the
same water parcel as a result of unequal sensor response
times. Because S anomalies over the upper 2000 m provides
some useful information about OHC anomalies, we suggest it
would be useful for Argo to also report conductivity as mea-
sured rather than calculated from temperature and salinity}
after being calculated from the measured conductivity. How-
ever, we calculated a .10% increase in RMSE in the OHC
anomalies when S is approximated with Argo float–like data
over the upper 2000 m alone, further motivating a method to
constrain S from satellite magnetometry and other magnetic
data. Further, some satellite data have experienced time peri-
ods with less-than-global coverage. For instance, throughout
much of the 1990s, SSH was observed using satellite altimetry
between 668S and 668N and not in polar regions. Only includ-
ing SSH between these latitudes in the training data increases
RMSE of OHC estimate by less than 0.1%. These factors will
need to be accounted for if our proposed technique is going
to be used to monitor OHC.

Some future research directions could refine our proposed
remote monitoring system, which could be useful for either
monitoring Earth’s energy imbalance or (hurricane) forecasting
purposes. First, measurement errors for each of the variables
included in the GAM need to be refined. Second, additional
training observations could improve the accuracy of the OHC
estimates. Deep Argo (e.g., Gasparin et al. 2020), Deepglider
(Osse and Eriksen 2007), SMART cables (Howe et al. 2019),
and Arctic hydrographic transects could make a valuable

additions to the hydrographic training data used here, which
can be explored in a follow-up implementation study. Supple-
menting ship-based observations with hydrographic data from
deep Argo could increase the variance in OHC in the train-
ing data and therefore reduce the RMSE of the OHC esti-
mates. Third, there exists an optimal combination of factors
to arrive at the most realistic monitoring method for OHC
anomalies. For example, the GAM-training frequency given
the existing hydrographic transects and other full-depth
data is likely somewhere between once per 24 years and
every year. We may need to more explicitly account for a
seasonal cycle in the algorithm to estimate OHC anomalies
on sub-multiyear time scales. This will not be feasible
regionally by simply including time stamps in the GAM
because of aliasing in many regions (e.g., the Arctic), but
our method could be improved by supplementing it with the
seasonal cycles of OHC anomalies from other methods,
such as data assimilation}or some proxy-based estimates.
There is also an optimal blend of our proposed method with
other existing methods, which future studies will determine.
The most accurate use of the method proposed here to
remotely monitor OHC is to apply it to locations where
observations do not exist over the full water column and
data assimilation models do not accurately calculate the
OHC. Finally, the opportunity for extracting S is currently
being explored by several research groups. Tidal magnetic
fields from Swarm could potentially be used as a substitute
for S, given that electrical conductivity of the ocean allows

FIG. 14. Trade-off between OHC anomaly variance in training data and time period length: the (percent) RMSEs
using the GAM, OHC′ ∼ f1 SSH′( )1 f2 p′b

( )
1 f3 S′( )1 f4 OHC′

2000m( )1 g SSH′,OHC′
2000m( ), over the entire time

period of ECCOv4r3 (1992–2015), (a),(b) trained on all available transects, regardless of time and (c),(d) trained on
only the transects sampled for the current year in which a prediction is made. (a),(c) RMSEs and (b),(d) percent
RMSEs. Areas where the GAM-based estimates of the OHC anomalies are statistically insignificant to the 95% level
from the ECCOv4r3 OHC anomalies are outlined in thick black contours in (b) and (d). Hypothetical measurement
errors specified in the main text are randomly sampled and added to the predictors’ values. The Black Sea and Caspian
Sea are not included in ECCO.
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for the generation of ocean tidal magnetic fields, there is a
strong relationship between S (anomalies) and OHC
(anomalies), and M2 tidal magnetic fields can potentially
predict global OHC in at least the upper 2000 m (Irrgang
et al. 2019). A future study will ultimately make use of all
available observations from at least as far back in time as
2002 to derive a time series and map of OHC with uncer-
tainties and compare with other existing methods to esti-
mate OHC. Furthermore, future investigations could
inspect the potential to monitor freshwater fluxes into the
ocean, infer ocean heat transport, and/or provide directional
information about tsunami flow (e.g., Tyler 2005; Manoj
et al. 2010; Minami et al. 2015; Minami 2017) using a similar
approach to the one used in the present study.
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